Comparative Efficacy of Chemicals, Entomopathogenic Fungus and Botanical for the Management of Red Spider Mite Tetranychus macfarlanei

Mahmuda Tahmina, Rumpa Basak, Yasir Arafat, Dilruba Sharmin, Mahbuba Jahan, Mohammad Shaef Ullah


Tetranychus macfarlanei Baker & Pritchard, a serious phytophagous pest of many economical crops. In this study, the effects of six reduced risk chemicals viz. abamectin, bifenthrin, bifenazate, etoxazole, hexythiazox, and spinosad with various mode of action, entomopathogenic fungus Beauveria bassiana and botanical neem oil were evaluated against adult and egg stages of T. macfarlanei under laboratory conditions. The survivability of adult female and eggs of T. macfarlanei considering all chemicals are dose dependent. The response of adult female against different chemicals between observed and expected values were closely fitted. The LC50 values of all chemicals except spinosad were effective against eggs and adult females of the T. macfarlanei. Etoxazole, known for inhibiting hatching and moulting might be recommended against egg stage as they found suitable but were not much effective against adult mites (LC50 = 340.83 and 0.55 ppm for adults and eggs, respectively). Neem oil was found to be moderately effective against eggs and adult females of T. macfarlanei (LC50 = 2.75 and 2.73% for adults and eggs, respectively). The entomopathogen, B. bassiana was also found to be effective against eggs and adult females of T. macfarlanei (LC50 = 3.63×107 and 3.98×107 spore mL-1 for adults and eggs, respectively). Finally, it could be concluded that all chemicals except spinosad (LC50 > 2800 ppm for eggs) can be used for the management of red spider mite but the entomopathogenic fungus B. bassiana and the botanical Neem oil will be promising alternatives for successful management of T. macfarlanei in IPM program.


Spider mite, reduced risk pesticide, botanical, entomopathogen, IPM

Full Text:



ABBOTT, S. W. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18:265– 267.

BARRETO, R. S., MARQUES, E. J., GONDIM, M. G. C. JR. & DE OLEIVERA, J. V. 2004. Selection of Beauveria bassiana (Bals.) Vuill. and Metarhizium anisopliae (Metch.) Sorok. for the control of the mite Mononychellus tanajoa (Bondar). Scientia Agricola, 61:659–664.

BERNARDI, D., BOTTON, M., DA CUNHA, U. S., BERNARDI, O., MALAUSA, T., GARCIA, M. S. & NAVA, D. E. 2013. Effects of azadirachtin on Tetranychus urticae (Acari: Tetranychidae) and its compatibility with predatory mites (Acari: Phytoseiidae) on strawberry. Pest Management Science, 69:75-80.

BOLLAND, H. R., GUTIERREZ, J. & FLECHTMAN, C. H. W. 1998. World catalogue of the spider mite family (Acari: Tetranychidae). Leiden: Brill Academic. 392 pp.

BRITO, H., MANOEL, G., JOSÉ, O. & CLAUDIO, C 2006. Toxicity of neem (Azadirachta indica A. Juss) formulations for twospotted spider mite and Euseius alatus De Leon and Phytoseiulus macropilis (Banks) (Acari: Phytoseiidae). Neotropical Entomology, 35: 500-505.

CROFT, B. A. & VAN DE BAAN, H. E. 1988. Ecological and genetic factors influencing evolution of pesticide resistance in tetranychid and phytoseiid mites. Experimental and Applied Acarology. 4:277–300.

DEKEYSER, M. A. 2005. Acaricide mode of action. Pest Management Science, 61: 103–110.

DRIPPS, J. E., BOUCHER, R. E., CHLORIDIS, A., CLEVELAND, C. B., DEAMICIS, C. V., GOMEZ, L. E., PAROONAGIAN, D. L., PAVAN, L. A., SPARKS, T. C. & WATSON G. B. 2011. The spinosyn insecticides. In O. Lopez and J. G. Fernandez-Bolanos (Eds.), Green trends in insect control. Royal Society of Chemistry, Cambridge, UK. pp. 163–212.

FINNEY, D. J. 1971. Probit analysis (3rd ed). Cambridge: Cambridge University Press. pp. 383.

GATARAYIHA, M. C., LAING, M. D. & MILLER, R. M. 2012. Selection of Beauveria bassiana strains against the two spotted spider mite, Tetranychus urticae Koch in laboratory and greenhouse trials. African Journal of Microbiol Research, 6:2694-2703.

GEORGHIO, G. P. 1980. Insecticide resistance and prospects for its management. Residue Reviews, 76:131–145.

GOTOH, T., KITASHIMA, Y., GOKA, K. & NAGATA, T. 2001. Susceptibility of the red spider mite, Oligonychus coffeae (Acari: Tetranychidae), to acaricides on tea plants in Japan. International Journal of Acarology, 27:303–307.

GOTOH, T., KORENAGA, T., IKEJIMA, S. & HOSHINO, T. 2008. Acaricide mediated suppression of Panonychus citri (McGregor) (Acari: Tetranychidae) in pear orchards in Japan. International Journal of Acarology, 34:393–402.

ILIAS, A., RODITAKIS, E., GRISPOU, M., NAUEN, R., VONTAS, J. & TSAGKARAKOU, A. 2012. Efficacy of ketoenols on insecticide resistant field populations of two-spotted spider mite Tetranychus urticae and sweet potato whitefly Bemisia tabaci from Greece. Crop Protection, 42:305–311.

ISLAM, T., BISWAS, M. J. H., HOWLADER, M. T. H. & ULLAH, M. S. 2017. Laboratory evaluation of Beauveria bassiana, some plant oils and insect growth regulators against twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Persian Journal of Acarology, 6:203-211.

IVES, A. R., GLAUM, P.R., ZIEBARTH, N. L. & ANDOW, D. A. 2011. The evolution of resistance to two toxin pyramid transgenic crops. Ecological Applications, 21:503–515.

JEPPSON, L. R., KEIFER, H. H. & BAKER, E. W. 1975. Mites injurious to economic plants. Berkeley: University of California Press. 614 pp.

KHALIGHI, M., TIRRY, L. & VAN LEEUWEN, T. 2014. Cross-resistance risk of the novel complex II inhibitors cyenopyrafen and cyflumetofen in resistant strains of the two-spotted spider mite Tetranychus urticae. Pest Management Science, 70:365–368.

MARČIĆ, D., PERIĆ, P. & MILENKOVIĆ, S. 2011. Acaricides – biological profiles, effects and used in modern crop protection. In: STOYTCHEVA, M. (Ed.), Pesticides – formulation, effects, fates. Lucknow: InTech; pp. 37–61.

MOTA-SANCHEZ, D. & WISE, J.C. 2020. The Arthropod Pesticide Resistance Database.

Michigan State University. On-line at: [accessed 24 April 2020].

NAUEN, R., STUMPF, N., ELBERT, A., ZEBITZ, C. P. W. & KRAUS, W. 2001. Acaricide toxicity and resistance in larvae of different strains of Tetranychus urticae and Panonychus ulmi (Acari: Tetranychidae). Pest Management Science. 57:253–261.

NICASTRO, R. L., SATO, M. E. & DA SILVA, M. Z. 2010. Milbemectin resistance in Tetranychus urticae (Acari: Tetranychidae): selection, stability and cross-resistance to abamectin. Experimental and Applied Acarology, 50:231–241.

OSAKABE, M., UESUGI, R. & GOKA, K. 2009. Evolutionary aspects of acaricide-resistance development in spider mites. Psyche A Journal of Entomology, https ://

SALGADO, V. L. & SPARKS, T.C. 2005. The spinosyns: chemistry, biochemistry, mode of action, and resistance. In: Gilbert, L.I., Iatrou, K. & Gill, S.S. (Eds.), Comprehensive Insect Molecular Science, vol. 6, Control, Elsevier, New York, pp. 137– 173.

SHONO, T. & SCOTT, J.G. 2003. Spinosad resistance in the housefly, Musca domestica, is due to a recessive factor on autosome I. Pesticide Biochemistry and Physiology, 75: 1–7.

SPARKS, T., CROUSE, G. D. & DURST, G. 2001. Natural products as insecticides: the biology, biochemistry and quantitative structure-activity relationships of spinosyns and spinosoids. Pest Management Science, 57:896-905.

SPARKS, T., DRIPPS, J., WATSON, G. & PAROONAGIAN, D. 2012. Resistance and cross-resistance to the spinosyns - a review and analysis. Pesticide Biochemistry and Physiology, 102:1–10.

SUGIMOTO, N. & OSAKABE, M. 2014. Cross-resistance between cyenopyrafen and pyridaben in the twospotted spider mite Tetranychus urticae (Acari: Tetranychidae). Pest Management Science, 70:1090–1096.

SUSVEG-ASIA. 2007. SUSVEG.Asia Brinjal integrated pest management (IPM). [accessed 24 April 2020].

THOMPSON, G. D., DUTTON, R. & SPARKS, T. C. 2000. Spinosad – a case study: an example from a natural products discovery program. Pest Management Science, 56:696–702.

UESUGI, R., KOICHI, G. & OSAKABE, MH. 2002. Genetic basis of resistances to chlorfenapyr and etoxazole in the two-Spotted spider mite (Acari: Tetranychidae). Journal of Economic Entomology, 95:1267-74.

ULLAH, M. S., HAQUE, M. A., NACHMAN, G. & GOTOH, T. 2012. Temperature-dependent development and reproductive traits of Tetranychus macfarlanei (Acari: Tetranychidae). Experimental and Applied Acarology, 56:327–344.

ULLAH, M. S. & GOTOH, T. 2013. Laboratory-based toxicity of some acaricides to Tetranychus macfarlanei and Tetranychus truncatus (Acari: Tetranychidae). International Journal of Acarology, 39:244-251.

ULLAH, M. S., GOTOH, T. & LIM, U. T. 2014. Life history parameters of three phytophagous spider mites, Tetranychus piercei, T. truncatus, and T. bambusae (Acari: Tetranychidae). Journal of Asia-Pacific Entomology, 17: 767–773.

ULLAH, M. S. & LIM, U. T. 2015. Laboratory bioassay of Beauveria bassiana against Tetranychus urticae (Acari: Tetranychidae) on leaf discs and potted bean plants. Experimental and Applied Acarology, 65:307–318.

ULLAH, M. S. & LIM, U. T. 2017. Laboratory evaluation of the effect of Beauveria bassiana on the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). Journal of Invertebrate Pathology, 148:102–109.

VAN LEEUWEN, T., VAN POTTELBERGE, S. & TIRRY, L. 2005. Comparative acaricide susceptibility and detoxifying enzyme activities in field-collected resistant and susceptible strains of Tetranychus urticae. Pest Management Science, 61:499–507.

VAN LEEUWEN, T., VONTAS, J., TSAGKARAKOU, A. & TIRRY, L. 2009. Mechanisms of acaricide resistance in the two-spotted spider mite Tetranychus urticae. In: Ishaaya, I. & Horowitz, A. R. (Eds.), Biorational control of arthropod pests. Dordrecht: Springer. pp. 347–393.

VAN LEEUWEN, T., TIRRY, L., YAMAMOTO, A., NAUEN, R. & DERMAUW, W. 2015. The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pesticide Biochemistry and Physiology, 121:12–21.

VASSILIOU, V.A. & KITSIS, P. 2013. Acaricide resistance in Tetranychus urticae (Acari: Tetranychidae) populations from Cyprus. Journal of Economic Entomology, 106:1848–1854

WEKESA, V. W., KNAPP, M., MANIANIA, N. K. & BOGA, H. I. 2006. Effects of Beauveria bassiana and Metarhizium anisopliae on mortality, fecundity and egg fertility of Tetranychus evansi. Journal of Applied Entomology, 130:155-159.

YAMADA, T., KAERIYAMA, M., MATSUI, N. & YONEDA, H. 1987. Development of a new miticide, hexythiazox. Journal of Pesticide Science, 12:327–335.

YAMAMOTO, A., YONEDA, H., HATANO, R. & ASADA, M. 1995. Laboratory selections of populations in the citrus red mite, Panonychus citri (McGregor), with hexythiazox and their cross resistance spectrum. Journal of Pesticide Science, 20:493–501.

YOUNG, H.P., BAILEY, W.D., ROE, R.M., IWASA, T., SPARKS, T.C., THOMPSON, G.D. & WATSON, G.B. 2001. Mechanism of resistance and cross-resistance in a laboratory, spinosad-selected strain of the tobacco budworm and resistance in laboratory-selected cotton bollworms, in: Proceedings of the 2001 Beltwide Cotton Production Conference, National Cotton Council, Memphis TN, pp. 1167–1171.

ZHAO, J.-Z., COLLINS, H.L., LI, Y.-X., MAU, R. F. L., THOMPSON, G. D., HERTLEIN, M., ANDALORO, J. T., BOYKIN, R. & SHELTON, A.M. 2006. Monitoring of diamondback moth (Lepidoptera: Plutellidae) resistance to spinosad, indoxacarb, and emamectin benzoate. Journal of Economic Entomology, 99: 176–181.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.