Potentially mineralizable nitrogen in ten important sub-tropical soil series of Bangladesh
Abstract
Keywords
Full Text:
PDFReferences
AKTER, M., DEROO, H.,DE GRAVE, E.,VAN ALBOOM,A., KADER, M.A.,BOECKX, P.& SLEUTEL, S. 2018a. Link between paddy soil mineral nitrogen release and iron and manganese reduction examined in a rice pot growth experiment. Geoderma, 326: 9-21.
AKTER, M., KADER, M.A., PIERREUX, S., GEBREMIKAEL, M.T., BOECKX, P., &SLEUTEL, S. 2016. Control of Fe and Mn availability on nitrogen mineralization in subtropical paddy soils. Geoderma, 269: 69-78.
AKTER, M., KAMAL, A.M., KADER, M.A., VERHOEVEN, E., CHARLOTTE, D., BOECKX, P. &SLEUTEL, S. 2018b.Impact of irrigation management on paddy soil N supply and depth distribution of abiotic drivers. Agriculture, Ecosystems and Environment, 261: 12-24.
BOUYOCOS, G.J. 1927. The hydrometer as a new method for the mechanical analysis of soils. Soil Science, 23, 343-353.
CONNELL, M.J., RAISON, R.J. & KHANNA, P.K. 1995. Nitrogen mineralization in relation to site history and soil properties for a range of Australian forest soils. Biology & Fertility of Soils, 20: 213-220.
FAN, M., SHEN, J., YUAN, L., JIANG, R., CHEN, X. & DAVIES, W.J. 2012. Food security. Improving crop productivity and resource efficiency to ensure food security and environmental quality in China. Journal of Experimental Botany, 63: 13-24.
FRG.2018. Fertilizer Recommendation Guide: Bangladesh Agricultural Research Council (BARC), Farmgate, Dhaka 223p.
JACKSON, M.L. 1973. Soil Chemical analysis. Published Prentice Hill of India private Ltd., M-97, Connaught. Circus, New Delhi-1, India pp. 144-146.
KADER, M.A., SLEUTEL, S., BEGUM, S.A., MOSLEHUDDIN, A.Z.M. &DE NEVE, S. 2013. Nitrogen mineralization in sub‐tropical paddy soils in relation to soil mineralogy, management, pH, carbon, nitrogen and iron contents. European Journal of Soil Science, 64: 47-57.
KADER, M.A., YEASMIN, S., SOLAIMAN, Z.M., DE NEVE, S. &SLEUTEL, S. 2017. Response of hydrolytic enzyme activities and N mineralization to fertilizer and organic matter application in two long-term subtropical paddy field experiments. European Journal of Soil Biology, 80: 27-34.
KEMPER, A.J. 1974. Determination of sub-microquantities of ammonium and nitrates in soils with phenol, sodiumnitroprusside and hypochlorite. Geoderma, 12: 201-206.
LI, W., XIA, Y., TI, C. & YAN, X. 2011. Evaluation of biological and chemical nitrogen indices for predicting nitrogen-supplying capacity of paddy soils in the Taihu Lake region, China. Biology and Fertility of Soils, 47: 669-678.
MANGUIAT, I.J., WATANABE, I.J., WATANABLE, I., MASCARINA, G.B. & TALLADA, J.G. 1996. N Mineralization in Tropical Wetland Rice Soils, I. relationship with temperature and soil properties. Soil Science& Plant Nutrition, 42: 229-238.
MARTINEZ, J.M. &GALANTINI, J.A. 2017. A Rapid Chemical Method for Estimating Potentially Mineralizable and Particulate Organic Nitrogen in Mollisols. Communication in Soil Science and Plant Analysis, 48: 113-126.
MURTHY, K.M.D., RAO, A.U., VIJAY, D. & SRIDHAR, T.V. 2015. Effect of levels of nitrogen, phosphorus and potassium on performance of rice.Indian Journal of Agricultural Research, 49(1): 83-87.
NARTEH, L.T. & SAHRAWAT, K.L. 1997. Potentially mineralizable nitrogen in West African lowland rice soils. Geoderma, 79: 145-154.
NYIRANEZA, J., ZEBARTH, B.J., ZIADI, N., BURTON, D.L., DRURY, C.F., BITTMAN, S. & GRANT, C.A. 2011. Prediction of soil nitrogen supply in corn production using soil chemical and biological indices. Soil Science Society of America Journal, 76: 925-935.
PAGE, A.L., MILLER, R.H. & KEENEY, D.R. (Ed). 1982) Methods of soil analysis, Part 2, Chemical and Microbiological Properties, American Soc. of Agronomy, Inc: Soil Sci. of America, Inc. Wisconson, USA. pp. 252-255.
PAUL, K.I., POLGLASE, P.L., O’ CONNELL, A.M., CARLYLE, J.C., SMETHURST, P.J. & KHANNA, P.K. 2003. Defining the relation between soil water content and net nitrogen mineralization. European Journalof Soil Science, 54: 39-47.
RAMIREZ, M.V., RUBILAR, R.A., MONTES, C., STAPE, J.L., FOX, T.R. & LEE-ALLEN, H. 2016. Nitrogen availability and mineralization in Pinus radiate stands fertilized mid-rotation at three contrasting sites. Journal of Soil Science and Plant Nutrition, 16: 118-136.
SAHRAWAT, K.L. 2004a. Organic matter accumulation in submerged soils. Advances in Agronomy, 81: 169¬-201.
SAHRAWAT, K.L. 2004b. Ammonium production in submerged soils and sediments: The role of reducible iron. Communications in Soil Science and Plant Analysis, 35: 399-411.
SAHRAWAT, K.L. & NARTEH, L.T. 2001. Organic matter and reducible iron control of ammonium production in submerged soils. Communications in Soil Science and Plant Analysis, 32: 1543¬-1550.
STRONG, D.T., SALE, P.W.G. & HELYAR, K.R. 1998. The influence of the soil matrix on nitrogen mineralisation and nitrification. I. Spatial variation and a hierarchy of soil properties. Australian Journal of Soil Research, 36, 429-447.
VAN EEKEREN, N., DE BOR, H., HANEGRAAF, M., BOKHORST, J., NIEROP, D., BLOEM, J., SCHOUTEN, T., DE GOEDE, R. & BRUSSAARD, L. 2010. Ecosystem services in grassland a associated with biotic and abiotic soil parameters. Soil Biology & Biochemistry, 42: 1491-1504.
WALKLEY, A. & BLACK, I.A. 1934. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37: 29-37.
Refbacks
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.